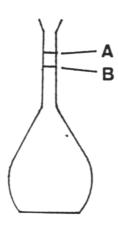


Instituto Politécnico de Tomar Escola Superior de Tecnologia Unidade Departamental de Engenharias Licenciatura em Engenharia Química e Bioquímica

QUÍMICA GERAL (1º Ano / 1º Semestre / 2017)

Trabalho Prático nº 1

Medição do volume e massa de líquidos

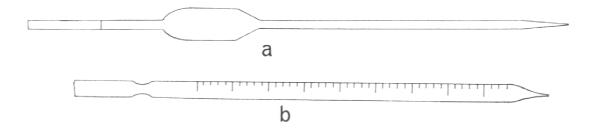

1. Introdução

Num laboratório é essencial conhecer e utilizar correctamente o material de vidro usado na medição do volume de líquidos.

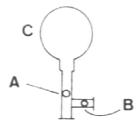
Este material pode apresentar dois tipos de calibração: a indicação do volume que contém ou a indicação do volume de escoamento. Um exemplo típico do primeiro caso são os balões volumétricos (apesar de por vezes apresentarem as duas indicações), ao passo que as pipetas e buretas são exemplos do segundo.

1.1. Balões volumétricos

Podem ser de dois tipos, de contenção ou de vazamento, mas as duas marcas correspondentes podem estar no mesmo balão:

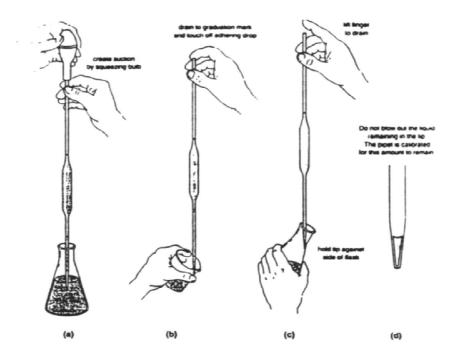


Uma vez que estes balões vêm calibrados para uma determinada temperatura, normalmente 20°C, não convém sujeitá-los a variações de temperatura, por isso $\underline{\epsilon}$ absolutamente proibido aquecer um balão volumétrico.


Muitas vezes é preferível dissolver o sólido num gobelet com uma menor quantidade de solvente, transferir esta solução para o balão e adicionar mais solvente. Rolha-se o balão e inverte-se agitando várias vezes para homogeneizar. Adiciona-se mais solvente até próximo da marca e volta-se a homogeneizar. Finalmente, o volume é ajustado por adição cuidadosa do solvente, gota-a-gota.

1.2. Pipetas

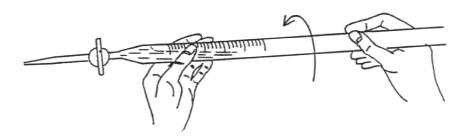
As pipetas podem ser divididas em dois grandes tipos: *volumétricas* ou de transferência e *graduadas* ou de medida. No primeiro tipo existe uma única marca indicadora do nível a que o líquido deve ser ajustado, ao passo que no segundo caso existe uma escala que permite o vazamento de quantidades variáveis de líquido:


Existem pipetas de diversas capacidades, cobrindo uma gama que vai das centenas de ml até alguns μ l. O enchimento das pipetas pode ser feito com o auxílio de uma borracha em forma de pêra ou com um enchedor mais adequado, tipo 'pumpette', também em borracha:

Após comprimir o bolbo C, a válvula A é pressionada até que o nível do líquido suba ligeiramente acima do nível pretendido. O nível pode ser então ajustado pressionando a válvula B, ou retirando o enchedor e tapando rapidamente com o polegar a extremidade superior da pipeta, e afrouxando ligeiramente a pressão do polegar até que o nível seja atingido.

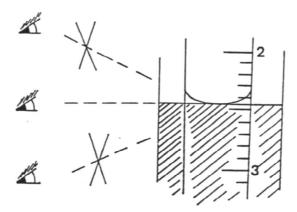
Atenção: A pipeta nunca deve ser enchida por sucção bucal directa!

Terminado o vazamento do líquido, e após se ter encostado a extremidade inferior da pipeta ao recipiente de recolha, <u>o líquido que permanece aderente no interior da pipeta não deve ser removido</u>, uma vez que esta já se encontra calibrada tendo em conta este volume:

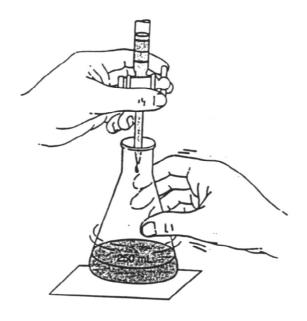


1.3. Buretas

A bureta de válvula consiste num tubo cilíndrico graduado, com uma válvula capaz de controlar o fluxo de líquido vazado e cujo volume é o indicado pelo instrumento.


O tipo de bureta mais conhecido é o de torneira (Geissler) em vidro ou em teflon (se a torneira for de vidro, é necessário lubrificar a mesma, para evitar a passagem de líquido).

Antes de ser utilizada, a bureta deve ser lavada com água destilada (e deve verificar se a torneira funciona correctamente), de acordo com o esquema:



De seguida, a bureta é cheia com o líquido a usar, introduzida pela parte superior com o auxílio de um funil. Deve-se abrir totalmente a torneira durante alguns segundos de modo a eliminar bolhas de ar. No final do vazamento, a última gota pendente é eliminada encostando a extremidade da bureta à parede do recipiente utilizado.

Devido à tensão superficial, a superfície de um líquido contido num tubo encontra-se encurvada, e tem a designação de menisco. No caso do líquido apresentar um menisco côncavo e ser incolor ou fracamente corado, a leitura do nível do líquido deve ser a da posição do apex do menisco:

Durante uma titulação, o Erlenmeyer deve ser constantemente agitado, em movimento circular com a mão direita, ao passo que a adição do líquido contido na bureta (titulante) é feita lentamente, gota-a-gota, usando a mão esquerda:

1.4. Provetas

A proveta é de todos os instrumentos de medição de volumes o menos rigoroso, pelo que não deve ser utilizada para medições rigorosas de volumes. Só deve usada para medir volumes aproximados de líquidos, e apenas quando não intervêm em quaisquer cálculos.

2. Procedimento experimental

Determinação do erro associado à medida do volume de um líquido com diferentes materiais de vidro.

- 2.1. Pesar um gobelet vazio, previamente seco em estufa de material de vidro. Utilizar a balança analítica.
- 2.2. Medir 25 ml de água destilada com uma bureta e transferir para o gobelet.
- 2.3. Pesar o gobelet com água destilada.
- 2.4. Determinar a temperatura da água com um termómetro de mercúrio. A partir da densidade da água a esta temperatura calcular o volume efectivo.
- 2.5. Repetir o procedimento com o restante material de vidro (pipeta volumétrica, pipeta graduada, proveta, balão volumétrico).
- 2.6. Lavar o material e colocá-lo na estufa de material de vidro.

3. Bibliografia

- 3.1. A. J. L. O. Pombeiro, *Técnicas e Operações Unitárias em Química Laboratorial*, 3ª edição, Fundação Calouste Gulbenkian, Lisboa, 1998.
- 3.2. Chang, R., Química, 5^aed., McGraw-Hill, Lisboa, 1995

Densidade da água:

T/°C	ρ / g cm ⁻³	T/°C	ρ / g cm ⁻³	T/°C	ρ / g cm ⁻³
10	0.9984	19	0.9974	28	0.9954
11	0.9983	20	0.9972	29	0.9952
12	0.9982	21	0.9970	30	0.9949
13	0.9982	22	0.9968	31	0.9946
14	0.9981	23	0.9966	32	0.9943
15	0.9979	24	0.9964	33	0.9940
16	0.9978	25	0.9962	34	0.9937
17	0.9977	26	0.9959	35	0.9934
18	0.9975	27	0.9957		

4 .	Registo dos Resultados					
	Turma: Grupo:	////				

Material	Peso _{gobelet} /g	Peso _{gobelet + água} /g	Peso _{água} /g	T/°C	Vol. _{efectivo} /mL	Erro/mL
Bureta						
Pipeta						
Graduada						
Pipeta						
Volumétrica						
Balão						
volumétrico						
Proveta						

Demonstração de cálculos:

Peso água	
Volume efectivo	
Erro	

5. Questões pós-laboratoriais

- 5.1. Ordenar por ordem decrescente de exactidão as mediadas efectuadas. Discutir os resultados.
- 5.2. Qual a diferença entre uma pipeta graduada e uma pipeta volumétrica? Em que situações uma e outra devem ser utilizadas?
- 5.3. Pretende adicionar lentamente (gota-a-gota) uma quantidade exacta de uma solução aquosa a um determinado meio. Qual o material de vidro mais indicado para realizar a operação? Justifique.
- 5.4. Qual a principal aplicação dos balões volumétricos? Refira alguns dos cuidados a ter nessa aplicação.
- 5.5. Referir alguns dos cuidados experimentais a ter na utilização da balança analítica.