$$
\begin{gathered}
\text { ipt Instituto Politécnico de Tomar } \\
\text { Frequency of CHEMICAL THERMODYNAMICS }- \text { January } 8,2014 \\
\mathrm{R}=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=0.082 \mathrm{~atm} \text { L. } \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1} ; 1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg} \\
\text { Maximum time: } 2 \mathrm{H} 30 \mathrm{~m}
\end{gathered}
$$

1. Two moles of oxygen (considered as an ideal gas) are compressed adiabatically with application of constant exterior pressure of 10 atm , since the initial temperature of $26.85^{\circ} \mathrm{C}$ and 1 atm , until a final equilibrium state. Considering $\mathrm{Cp}=7 / 2 \mathrm{R}$:
1.1. Calculate the final temperature of the gas.
1.2. Calculate the work, w, heat, Q, internal energy change, $\Delta \mathrm{U}$ and enthalpy change, $\Delta \mathrm{H}$ (If you do not solved the preceding paragraph consider the final temperature equal to 1071 K).
2. The reaction of nitrogen monoxide oxidation is important in the process of formation of smoke pollutants

$$
\mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

Calculate for this reaction:
2.1. The standard enthalpy of reaction, $\Delta H^{o}{ }_{r}$ at 298 K .
2.2. The enthalpy of reaction at 200 K .

Compound	ΔH_{f}^{o} at $298 \mathrm{~K} / \mathrm{kJ} . \mathrm{mol}^{-1}$	$C_{p} / \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$
$\mathrm{NO}(\mathrm{g})$	90.29	30.3
$\mathrm{O}_{2}(\mathrm{~g})$	----	30.0
$\mathrm{NO}_{2}(\mathrm{~g})$	33.10	39.4

3. Entropy is the fundamental property associated with the $2^{\text {nd }}$ law of Thermodynamics 3.1. State the second Law.
3.2. Calculate the entropy change when 1 mol of water vapor is heated from $200{ }^{\circ} \mathrm{C}$ until $400{ }^{\circ} \mathrm{C}$ at 1 atm . The molar heat capacity of water is given by the equation: $C_{p} / \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}=30.51+1.03 \times 10^{-2} \mathrm{~T}$
4. Using the Trouton rule $\left(\Delta S_{\text {vap }}=85 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right.$ at the normal boiling temperature) calculate the vapor pressure of dipropylic ether at $33^{\circ} \mathrm{C}$, knowing that the normal boiling temperature is $89.5^{\circ} \mathrm{C}$.
5. It was found that a solution of benzene and toluene at 293 K showed a total vapor pressure of 46 mmHg . At that temperature, vapor pressures of pure benzene and toluene are equal to 74.7 mmHg and 22.3 mmHg .
5.1. Determine the mole fraction of benzene in solution and in the vapor phase in equilibrium with it.
5.2. Calculate the $\Delta \mathrm{G}_{\text {mist }}$ assuming the ideality in liquid phase.
