Instituto Politécnico de Tomar

MASTER in CHEMICAL TECHNOLOGY

SURFACE AND INTERFACE CHEMISTRY

Exercises - Adsorption of gases in solids

1. Data in the table refer to the adsorption of CO (carbon monoxide) in coal at 273 K . Confirm that they obey to the Langmuir isotherm and obtain the constant K and the volume corresponding to a monolayer.

| P/torr | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V / cm^{3} | 10.2 | 18.6 | 25.5 | 31.5 | 36.9 | 41.6 | 46.1 |

2. The following data refer to the adsorption of nitrogen in a sample of 0.92 g of silica gel at 77 K , being p the equilibrium pressure and V the adsorbed volume:

P / kPa	3.7	8.5	15.2	23.6	31.5	38.2	46.1
	54.8						
V / cm^{3} (STP)	82	106	124	142	157	173	196

Saturated vapor pressure, $P^{s}=101.3 \mathrm{kPa}$

Represent the adsorption isotherm and use the BET equation to calculate the specific area of the sample of silica gel taking the molecular nitrogen area $=16.2 \times 10^{-}$ ${ }^{20} \mathrm{~m}^{2}$.
3. The following results refer to the adsorption of nitrogen in a sample of graphitized carbon and give the ratio of nitrogen pressures at temperatures of 90 K and 77 K to get a certain amount of adsorption:

Quant. of N_{2} adsorbed $\left(V / V_{m}\right)$	0.4	0.8	1.2
$P(90 \mathrm{~K}) / P(77 \mathrm{~K})$	14.3	17.4	7.8

Calculate the isosteric heat of adsorption for each value of $\mathrm{V} / \mathrm{V}_{\mathrm{m}}$ and comment.
4. The decomposition of phosphine, PH_{3}, in tungsten, is first order at low pressures and zero-order the high pressures. Explain (hint: use the Langmuir isotherm).
5. The following data refer to the adsorption of n-butane at 273 K for a sample of tungsten powder that has a specific area (determined by nitrogen adsorption measurements at 77 K) of $6.5 \mathrm{~m}^{2} . \mathrm{g}^{-1}$.

Relative Pressure, P / P^{S}	0.04	0.10	0.16	0.25	0.30	0.37
$V_{\text {gas }}$ adsorbed, $\mathrm{cm}^{3}($ STP $) . \mathrm{g}^{-1}$	0.33	0.46	0.54	0.64	0.70	0.77

Use the BET equation to calculate the area of molecular butane adsorbed in the monolayer and compare with the value of $32.1 \times 10^{-20} \mathrm{~m}^{2} / \mathrm{molecule}$ estimated from the density of the liquid butane.
6. For the project of an installation for the fluorination of butadiene, it was studied the adsorption of butadiene in a catalyst at $15^{\circ} \mathrm{C}$. The results were:

$P /$ torr	100	200	300	400	500	600
V / cm^{3}	17.9	33.0	47.0	60.8	75.3	91.3

Verify if the Langmuir isotherm is suitable to these pressures. Apply also the BET isotherm. Comment. P^{s} (butadiene) $=200 \mathrm{kPa}$
7. Use the Kelvin equation to calculate the radius of pores that correspond to the capillary condensation of nitrogen at 77 K and a relative pressure of 0.5 . Consider
the adsorption in multilayer's as having the thickness of 0.65 nm at this pressure. For the nitrogen at $77 \mathrm{~K}, \gamma=8.05 \mathrm{mN} \cdot \mathrm{m}-1$ and the molar volume is $34.7 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$.
8. The adsorption of benzene in graphite follows a Langmuir isotherm. T the pressure of 1 torr the volume of benzene adsorbed on a sample of 2 mg of graphite is $4.2 \mathrm{~mm}^{3}$ at STP. At the pressure of 3 torr is $8.5 \mathrm{~mm}^{3}$. Admitting that the benzene molecule occupies $30 A^{2}$, estimate the surface area of graphite.

