

MASTER in CHEMICAL TECHNOLOGY

SURFACE AND INTERFACE CHEMISTRY

Exercises – Surface Tension

- For a water-air interface at 25° C and 1 atm, calculate the capillary rise in a glass tube with inner diameter of 0.2 mm. The surface tension of water at 25° C is 72 dine/cm. The specific masses of air and water at 25° C and 1 atm are, respectively, 0.001 g.cm⁻³ and 0.997 g.cm⁻³.
- 2. Two capillary tubes with internal radii of respectively 0.6 and 0.4 mm are dipped into a liquid of density 0.901 g.cm⁻³, in contact with air of density 0.001 g.cm⁻³. The difference recorded in capillary rise in the two tubes is 1 cm. Calculate the surface tension of the liquid assuming the contact angle is zero.
- 3. Calculate the vapor pressure of a spherical droplet with radius of 20 nm at 35° C. The intrinsic water vapor pressure at this temperature is 5.623 kPa and its density is 994.0 kg.m⁻³. Consider the surface tension of water at this temperature equal to 7.275×10^{-2} Nm⁻¹.
- 4. The work of adhesion to the interface water-cellulose acetate is 115.9 mJ.m⁻². Knowing that the water wets a film of cellulose acetate with a contact angle of 53.7°, calculate the surface tension of the cellulose acetate. Consider as a good approximation for the interfacial tension between water-cellulose acetate:

$$\gamma_{\scriptscriptstyle LS} = \gamma_{\scriptscriptstyle S} + \gamma_{\scriptscriptstyle L} - 2 \bigl(\gamma_{\scriptscriptstyle S} \gamma_{\scriptscriptstyle L} \bigr)^{\!\!\!\!1/2}$$

5. The figure below shows the variation of the surface tension for a given concentrated surfactant:

The slope at low concentrations is -16.7 mN.m^{-1} . Calculate the surface excess concentration and the area occupied per molecule at the surface.

6. The following surface tensions have been measured for aqueous solutions of nonionic surfactants CH₃(CH₂)₉(OCH₂CH₂)₅OH at 25 °C:

$C/10^{-4}$ mol.dm ⁻³	0.1	0.3	1	2	5	8	10	20	30
$\gamma/mN.m^{-1}$	63.9	56.2	47.2	41.6	34.0	30.3	29.8	29.6	29.5

Determine the critical micelle concentration (c.m.c.) and calculate the area occupied by each molecule of surfactant adsorbed at c.m.c.

 The surface tension of a series of surfactant aqueous solutions were measured, at 20° C, with the following results:

[A]/M	0	0.10	0.20	0.30	0.40	0.50
γ/mNm^{-1}	72.8	70.2	67.7	65.1	62.8	59.8

Calculate the surface excess concentration and the superficial pressure, π , exerted by the surfactant and investigate if the relation $\pi A_m = k_B T$ is obeyed. **8.** The surface tension of aqueous solutions of carboxylic acids at 300 K can be expressed by the following empirical equation:

$$\gamma_0 - \gamma = a \log_{10}(1 + bC)$$

 γ_0 is the surface tension of pure water, *C*/moldm⁻³ is the acid concentration, and <u>a</u> and <u>b</u> are constants given in the following table:

	C ₂ H ₅ COOH	C ₃ H ₇ COOH	C ₅ H ₁₁ COOH
10^3 .a /Nm ⁻¹	29.8	29.8	29.8
$b/dm^3 mol^{-1}$	6.07	19.64	232.7

8.1. The surface adsorption of carboxylic acids is positive or negative?

8.2. Calculate the surface area occupied by each molecule of hexanoic acid at high concentrations (bC >> 1).

8.3. What conclusions can we withdraw from the table on the way the molecules are occupying the surface?