

MESTRADO EM TECNOLOGIA QUÍMICA

Frequência de **Química das Superfícies e Interfaces** – 21 de Dezembro de 2010 $R = 8.314 \text{ J.K}^{-1}.\text{mol}^{-1} = 0.082 \text{ atm L.mol}^{-1}.\text{K}^{-1}; 1 \text{ atm} = 101325 \text{ Pa} = 760 \text{ mmHg}$ Duração máxima: 2H30m

I

- 1. Uma bolha no interior da água ($\gamma_{20^{\circ}C} = 73 \text{ mN.m}^{-1}$) tem um raio de 0.01 mm.
- 1.1. Calcular o excedente de pressão interna em relação à pressão externa à temperatura ambiente.
- 1.2. Este valor seria maior ou menor numa solução diluída de etanol? Justificar.
- 2. As seguintes tensões superficiais foram medidas para soluções aquosas de dodecilsulfato de sódio a 25 °C:

$c \times 10^3 / \text{mol.dm}^{-3}$	0	2	4	5	6	7	8	9	10
γ / mN.m ⁻¹	72.7	62.3	52.5	48.5	45.2	42.0	40.0	39.8	39.6

- 2.1. Determinar a concentração micelar crítica.
- 2.2. Calcular a área do ião dodecilsulfato adsorvido para esta concentração.

II

- 1. Explique o que entende por uma emulsão e como actua um agente emulsionante. Qual a principal característica de um agente emulsionante?
- 2. A tabela mostra alguns emulsionantes comuns utilizados na indústria de cosméticos.
- 2.1. Diga o que entende por escala HLB.
- 2.2. Seleccione uma combinação possível de emulsionantes que estabilize uma emulsão com um HLB óptimo de 12.

HLB of Widely Used Emulsifiers					
Sorbitan Trioleate Egg Yolk / Soy (Lecithin) Sorbitan Monostearate Triglyceryl Monocleate PEG-7 Glyceryl Monococoate	HLB 1.8 HLB 4.0 HLB 4.7 HLB 5.0 HLB 11 HLB 15				
Polysorbate 80	HLD 15				

III

1. G. Contarbis (Chevron Research Company) publicou os seguintes dados relativos à adsorção de azoto ($A_m = 16.2 \times 10^{-20} \text{ m}^2$) sobre uma sílica gel:

p/p ^s	$V(cm^3.g^{-1})*$
0.055	131.3
0.061	134.3
0.077	139.9
0.094	148.9
0.120	153.5
0.158	164.0
0.177	169.3
0.209	176.9
0.240	184.5
0.270	192.3
0.300	200.0
0.209 0.240 0.270	176.9 184.5 192.3

^{*}condições PTP

o fim pretendido $(\gamma_{SL} \approx \gamma_L + \gamma_S - 2(\gamma_L \gamma_S)^{1/2})$

- 1.1. Aplicar a isotérmica BET aos dados: $\frac{p}{(p^s p)V} = \frac{1}{V_m c} + \frac{c 1}{V_m c} \times \frac{p}{p^s}$. Calcular a área específica da sílica gel estudada.
- 1.2. Calcular o calor de adsorção da primeira camada, admitindo que o calor de condensação do azoto é 1.3 kcal.mol⁻¹.
- 2. Três polímeros A, B e C apresentam-se como candidatos para revestimento de monumentos de pedra como hidro-repelentes. Tendo em conta a tensão superficial da água à temperatura ambiente, $\gamma_L = 70 \text{ mN.m}^{-1}$ e que $W_{SL} = \gamma_L + \gamma_S \gamma_{SL}$ e a tensão superficial de cada polímero da tabela seguinte, diga qual o melhor polímero para

 A 5

 B 10

IV

C

19

Os zeólitos e carvões activados são dois exemplos de materiais com grande aplicação na área da Tecnologia Química. Descrever as propriedades e principais aplicações deste tipo de materiais.