

CET em QUALIDADE AMBIENTAL

Teste de Química Aplicada ao Ambiente – 28 de Janeiro de 2015

 $R = 8.314 \text{ J. } \text{K}^{\text{-1}}.\text{mol}^{\text{-1}} = 0.0821 \text{ atm.L.} \text{K}^{\text{-1}}.\text{mol}^{\text{-1}}; \text{ } N_{A} = 6.022 \text{x} 10^{23} \text{ mol}^{\text{-1}}; \text{ } T/\text{K} = \text{t/}^{\circ}\text{C} + 273.15$

I

Para um determinado estudo ambiental, faz-se subir um balão cheio de gás com um volume de 2.5 L a 1.2 atm e 25 °C até à estratosfera (30 km acima da superfície da Terra) onde a temperatura e a pressão são -23 °C e 3×10^{-3} atm. Calcule o volume final do balão.

II

O metano, CH₄, principal componente do gás natural, é usado para aquecimento. A equação química que traduz a reacção é: $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$. a) Acerte a equação; b) Se reagirem 2 moles de metano, qual o volume de oxigénio necessário a 20 °C e 0.98 atm? c) Qual o correspondente volume de ar, sabendo que o ar contém 21% de oxigénio em volume?

Ш

O carbonato de cálcio (pedra calcária) decompõe-se da seguinte forma:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Considerando os valores para as entalpia de formação padrão constantes da tabela calcular a entalpia da reacção. O processo é endotérmico ou exotérmico?

Composto	ΔH°_{f} (kJ/mol)
CaCO ₃ (s)	-1207.6
CaO(s)	-635.0
$CO_2(g)$	-393.5

IV

Calcular a quantidade de calor necessária para aquecer: a) um litro de água entre 30 °C e 60 °C; b) 1 kg de alumínio entre 30 °C e 60 °C. Os calores específicos da água e do alumínio são respectivamente 4.184 J.g⁻¹.K⁻¹ e 0.899 J.g⁻¹.K⁻¹. Explicar a diferença.