Final Test Chemical Thermodynamics II - 09 June 2015

$$
\begin{gathered}
\mathrm{R}=8.314{\mathrm{~J} . \mathrm{K}^{-1} \mathrm{~mol}^{-1}=}^{0} 0.082 \mathrm{~atm} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; 1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg} \\
\mathrm{k}_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1} ; \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} ; \mathrm{c}=3 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\text { Maximum allowed time: } 2 \mathrm{H} 30 \mathrm{~m}
\end{gathered}
$$

1. The mixture toluene (1) + bromociclopentane (2) presents a deviation to ideality at a temperature of 340 K that can be quantified by the expression $G^{\mathrm{E}} / R T=1.6 x_{1} x_{2}$. At that temperature the vapor pressures of the two substances are respectively 200 and 130 mmHg . Considering the ideality of the gas phase:
1.1. Calculate the composition of the azeotrope at this temperature and the correspondent pressure.
1.2. Outline the diagram p, x, y at the temperature of 340 K .
2. Consider the following phase diagram for the binary system $\mathrm{Cu} / \mathrm{Ag}$.

2.1. Describe briefly the diagram represented, and apply the lever rule to the points I and K.
2.2. A mixture with about of 20% of Cu is cooled from $1000{ }^{\circ} \mathrm{C}$ to $700{ }^{\circ} \mathrm{C}$. Describe the evolution of the system during this cooling, indicating the phases formed and their compositions.
3. Write the expression that gives you the partition function of a system with two levels of energy, being the non fundamental triply degenerate. Calculate the ratio of population at 500 K between the two levels knowing that they have a difference of energy corresponding to $6.1 \times 10^{-21} \mathrm{~J}$.
4. Calculate the heat capacity, C_{P}, at $25^{\circ} \mathrm{C}$, of the following substances: a) nitrogen, N_{2}; b) water, $\mathrm{H}_{2} \mathrm{O}$. The frequencies of the normal modes of vibration are in the following table:

Molecule	$\mathrm{v} / \mathrm{cm}^{-\mathbf{1}}$
$\mathbf{N}_{\mathbf{2}}$	2360
$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	$1654,3825,3935$

5. Consider the Debye model for solids.
 25 K, using the Debye model at low temperatures:

$$
C_{V}=\frac{12 \pi^{4} N k}{5}\left(\frac{T}{\theta_{D}}\right)^{3}
$$

5.2. Estimate the value of θ_{D} and envisage the heat capacity of copper at room temperature.

