INSTITUTO POLITÉCNICO DE TOMAR ESCOLA SUPERIOR DE TECNOLOGIA Departamento de Engenharia Química e do Ambiente

QUÍMICA I (1º Ano 1º Semestre)

Trabalho Prático n.º 6

Determinação da Entalpia de uma Reacção

1. Introdução

Pretende-se determinar a entalpia da reacção representada pela equação:

$$HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$$

Como não é fácil realizar laboratorialmente esta reacção, não iremos determinar a entalpia directamente. Realizar-se-ão outras reacções das quais determinaremos as respectivas entalpias, a fim de conseguir através da soma conveniente das equações determinar a entalpia da reacção acima referida.

Assim:

1)
$$HCl (g) \rightarrow HCl (aq)$$
 $\Delta H_1 = -17.8 \text{ kcal/mol}$
2) $NH_3 (g) \rightarrow NH_3 (aq)$ $\Delta H_2 = -8.3 \text{ kcal/mol}$
3) $NH_3 (aq) + HCl (aq) \rightarrow NH_4Cl (aq)$ $\Delta H_3 = \dots$
4) $NH_4Cl (aq) \rightarrow NH_4Cl (s)$ $\Delta H_4 = \dots$

Soma:

5)
$$HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$$
 $\Delta H_5 = \dots$

Tal como esta equação é a soma das equações 1, 2, 3 e 4, assim a respectiva entalpia será também igual à soma das entalpias de cada reacção parcial (**Lei de Hess**). Neste trabalho serão determinadas as entalpias correspondentes às reacções 3 e 4 e utilizar-se-ão os valores

tabelados das entalpias correspondentes às reacções 1 e 2 para atingir o objectivo: determinar a entalpia da reacção 5.

2. Procedimento experimental

2. 1. Determinação da entalpia da reacção 3:

3)
$$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$$

2.1.1. Parte experimental

- 2.1.1.1.Determinar a massa do copo (+ vareta) que servirá de vaso calorimétrico.
- 2.1.1.2. Medir 100 ml de solução de HCl (1.5 M) e 100 ml de solução de NH₃ (1.5 M).
- 2.1.1.3.Determinar as temperaturas iniciais das soluções com uma aproximação de 1°C (manter o termómetro 2 minutos dentro de cada solução e lavar bem antes de transferir de uma solução para outra).
- 2.1.1.4.Colocar as duas soluções no vaso calorimétrico, agitar e tomar nota da temperatura máxima obtida.

2.1.2. Resultados

2.1.2.1. Registo das observações dos ensaios realizados:

Massa do copo e vareta:
Temperatura inicial da solução de HCl:
Temperatura inicial da solução de NH ₃ :
Temperatura final:

2.1.2.2. Considerando a reacção 3 calcular:

- i) A concentração da solução de cloreto de amónio que se obtém quando se adicionam 100 ml de solução de HCl (1.5 M) a 100 ml de solução de NH₃ (1.5 M).
- ii) O número de calorias correspondentes à variação da temperatura das soluções iniciais e da solução final. (Admitir que o calor específico de todas as soluções é de 1 cal/g/°C e as densidades iguais a 1).

$$Q' = m \times Ce \times \Delta T$$

iii) O número de calorias absorvidas pelo copo calorimétrico e vareta. (Admitir que a variação de temperatura sofrida pelo vidro é igual à verificada nas soluções). O calor específico do vidro é $\approx 0.2 \text{ cal/g/°C}$

$$Q'' = m \times Ce \times \Delta T$$

iv) A quantidade de calor desenvolvido na reacção

$$Q =$$

- v) Entalpia da reacção (em kcal/mol) de cloreto de amónio:
- 2.2. Determinação da entalpia da dissolução do cloreto de amónio em água (reacção 4):

$$NH_4Cl(aq) \rightarrow NH_4Cl(s)$$

Considerando a dissolução do cloreto de amónio em água calcular a quantidade de cloreto de amónio sólido necessário para preparar 200 ml de uma solução aquosa com a concentração em NH₄Cl igual à da solução obtida da mistura de 100 ml de HCl (1.5 M) com 100 ml de solução de NH₃ (1.5 M).

2.2.1. Parte experimental

- 2.2.1.1. Pesar a quantidade de cloreto de amónio sólido anteriormente calculada.
- 2.2.1.2.Determinar a alteração de temperatura que se verifica quando se adiciona essa quantidade de cloreto de amónio a 200 ml de água. (Usar o mesmo vaso calorimétrico).

2.2.2. Resultados

^	\sim	A 1		• •	1	observac	~	1	•	1.	1
•	٠,	·, ı	L	2 acrota	doa	Obcorrio	2000	dag	ONGO LOG	r00 1170	100.
1.	/.	7.		1251210	uas	ODSELVA	ハロロン	(1(1))	CHSAIOS	TEATIZAG	1035

Massa de cloreto de amónio:

Temperatura inicial da água:

Temperatura obtida após adição de NH₄Cl sólido:

2.2.2.2. Cálculos

Considerando a dissolução do cloreto de amónio em água calcular:

 i) O número de calorias correspondente à variação de temperatura da dissolução do NH₄Cl na água.

$$Q' = m \times Ce \times \Delta T$$

ii) O número de calorias perdidas pelo copo calorimétrico e vareta

$$Q'' = m \times Ce \times \Delta T$$

iii) A quantidade de calor correspondente à reacção

$$Q =$$

iv) Calcular a entalpia de dissolução do cloreto de amónio (em kcal/mol).

$$\Delta H_d =$$

v) Calcular a entalpia da reacção 4

$$\Delta H_4 =$$

2.3. Determinação da entalpia da reacção 5:

Sabendo a entalpia de todas as reacções determinar a entalpia de formação do cloreto de amónio sólido:

$$\Delta H_5 =$$

3. Questões pós-laboratoriais

- 3.1. Enuncie a lei que caracteriza o método indirecto de cálculo da entalpia de reacção, utilizado neste trabalho.
- 3.2. Que outros métodos sugere para determinar a entalpia de uma reacção.
- 3.3. Comparar o valor obtido com o valor esperado. Dados: ΔH°_{f} (HCl, g) = -93.31 kJmol⁻¹; ΔH°_{f} (NH₃, g) = 294.1 kJmol⁻¹; ΔH°_{f} (NH₄Cl, s) = -314.43 kJmol⁻¹.

4. Bibliografia

- 4.1. Chang, R., *Química*, 5^aed., McGraw-Hill, Lisboa, 1995
- 4.2. Atkins & Jones, Chemistry: Molecules, Matter and Change, 4th ed., Freeman&Co., 1997
- 4.3. Kotz & Treichel, Chemistry and Chemical Reactivity, 5th ed., Thomson Brooks, 2003